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SHORT CAPILLARY WAVES ON THE SURFACE

OF A STRETCHING CYLINDRICAL JET OF A VISCOUS LIQUID

UDC 532.522.2.013.4:532.594Yu. G. Chesnokov

This paper presents asymptotic formulas describing the evolution of short-wave perturbations on the
surface of a cylindrical viscous liquid jet with the radius decreasing in time. The effects of Reynolds
and Weber numbers and the initial wavenumber on the decay of the perturbations are analyzed.

Introduction. The capillary breakup of drops with a nonuniform velocity distribution over the drop length
can be explained based on stability analysis for a stretching liquid cylinder under the action of capillary forces.
The capillary stability of a stretching cylindrical jet of a viscous liquid immersed in another fluid was studied by
Tomotika [1]. The stability of an elongated cylindrical drop in an external flow having a linear velocity distribution
over the radius-vector was studied by Khakhar and Ottino [2]. Both [1] and [2] deal with so-called creeping flows,
i.e. inertial forces are assumed to be negligibly small compared to viscous friction and surface tension. Papers [3, 4]
are devoted to the theoretical analysis of another important case of flows in which inertial forces and surface tension
are dominant, while viscous friction and interaction between the jet and the ambient medium can be neglected.

As is shown in [4], after a lapse of sufficiently long time, the greater the initial wavenumber, the higher
the growth rate of perturbations. Hence, if at the moment of drop formation the drop surface has initial small
perturbations with different wavelengths, secondary breakup of the drop can result from growth of shortest-wave
perturbations provided their initial amplitudes are comparable with the amplitudes of the perturbations with longer
wavelengths.

In [4], the influence of viscosity on the evolution of perturbations is assumed to be negligibly small. It is well
known that for an ideal-liquid jet of constant radius, the presence of short-wave perturbations leads to excitation
of harmonic oscillations whose frequency is proportional to the wavenumber to power 3/2. Owing to viscosity,
high-frequency oscillations are rapidly damped. In the case of an stretching jet, short-wave perturbations begin to
grow rapidly after a lapse of time. The growth of these perturbations can lead to breakup of the jet into drops.
Therefore, it is necessary to examine the rate of decay of the perturbation amplitude in the initial period of time.
The present paper is devoted to investigation of this problem.

1. Formulation of the Problem. The present paper deals with the capillary stability of a cylindrical jet
of an incompressible viscous liquid. The jet radius varies with time. As is shown by Rayleigh, jet breakup into drops
results from growth of axisymmetric perturbations. Hence, our attention is focused on this type of perturbations.
It is assumed that the liquid velocity is sufficiently high, so that the influence of gravity on the breakup of the liquid
jet due to capillary forces can be neglected.

When solving the problem, it is convenient to use nondimensional variables. Let us introduce the following
notation: h(t) is the jet radius (t is time), h0 = h(0) is the initial jet radius, ρ and µ are the density and viscosity
of the liquid, and σ is the surface tension at the interface between the liquid jet and the ambient medium (gas).
Then, h0, t0 = −h0/(2ht(0)), h0/t0, and p0 = σ/h0 can be used as the length, time, velocity, and pressure scales,
respectively. Here ht(0) denotes the time derivative of the jet radius at t = 0. We introduce a cylindrical coordinate
system (r, θ, z), where the z axis coincides with the symmetry axis. The axial and radial components of the liquid-
velocity vector are denoted by u and v, respectively. The liquid pressure is denoted by p. The governing equations
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for liquid motion in the jet includes the continuity equation

vr + v/r + uz = 0, (1.1)

the axial component of the Navier–Stokes equation

ut + vur + uuz = − 1
We

pz +
1

Re

[1
r

(rur)r + uzz

]
, (1.2)

and the radial component of the Navier–Stokes equation

vt + vvr + uvz = − 1
We

pr +
1

Re

[1
r

(rvr)r −
v

r2
+ vzz

]
. (1.3)

Hereinafter, the subscripts denote derivatives with respect to corresponding variables, i.e., vr = ∂v/∂r and so forth.
The Reynolds and Weber numbers are defined by Re = ρh2

0/(µt
2
0) and We = ρh3

0/(σt
2
0). On the free surface of the

jet described by the equation r = h(z, t), we impose the kinematic boundary condition

ht + uhz = v at r = h (1.4)

and two dynamic boundary conditions. The first condition requires that the tangential component of the viscous
stress be zero:

2vrhz + (ur + vz)(1− h2
z)− 2uzhz = 0 for r = h. (1.5)

According to the second condition, the normal components of the stress vector on the inner and outer sides of the
jet surface differ by the value σ(1/R1 + 1/R2), where R1 and R2 are the principal radii of the jet surface curvature
in the longitudinal and transverse directions. In the nondimensional variables, this condition is written as

p− We
Re

[2vr − (ur + vz)hz] = pa +
1
R1

+
1
R2

. (1.6)

Here pa is the ambient pressure, which is considered constant. The principal radii of curvature in the cylindrical
coordinate system are expressed as

1
R1

=
1

h(1 + h2
z)1/2

,
1
R2

= − hzz
(1 + h2

z)3/2
.

The problem formulated above allows the following representation of the solution. We assume that the jet
shape remains unchanged during deformation, i.e., hz = 0. The continuity equation (1.1) and boundary conditions
(1.4) and (1.5) are satisfied when the velocity components have the form

u = u1 = z/τ, v = v1 = −r/(2τ), (1.7)

where τ = 1 + t. The equations of liquid motion (1.2) and (1.3) and boundary condition (1.6) are satisfied if the
jet radius varies with time as

h = h1 = τ−1/2, (1.8)

and the liquid pressure is given by

p = p1 = pa + τ1/2 +
3 We
8τ3

(1− τr2)− We
Re τ

. (1.9)

The above formulas differ from those presented in [4] by the presence of an additional term in the expression for
the liquid pressure.

2. Equations for Small Perturbations of the Main Flow. Expressions (1.7)–(1.9) describe the
uniaxial extension of the liquid jet with undistorted jet shape. Let us assume that at the initial time the main flow
is subjected to small perturbations:

u = u1 + δu, v = v1 + δv, h = h1 + δh, p = p1 + δp. (2.1)

Here δu, δv, δh, and δp are perturbations of the velocity components, the jet radius, and the liquid pressure, which
are assumed to be small compared to u1, v1, h1, and p1, respectively.

The equations of small perturbations of the main flow and the corresponding boundary conditions can easily
be obtained by substituting (2.1) into (1.1)–(1.6) and omitting the terms containing the products of small quantities.
Let us introduce the stream function δψ: rδv = δψz, rδu = −δψr, and the quantity δζ, which is proportional to
the vorticity of the velocity field [δζ = r(δvz − δur)]. The equation for the stream function δψ follows from the
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linearized continuity equation, and the equation for δζ is derived from the linearized equations of liquid motion by
eliminating δp. We assume that at t = 0 (i.e., τ = 1), the initial perturbation of the jet radius is sinuous. This
initial condition can be satisfied if the quantities δh, δψ, and δζ are sought in the form

δh = iτ−1/2η(t) exp(ikz), δψ = rτ−1/2f(r, t) exp(ikz), δζ = rτ−1/2g(r, t) exp(ikz),

where i is imaginary unit, k(t) is the wavenumber, and the factors τ−1/2 and rτ−1/2 are introduced for convenience.
The variable z is eliminated from the equations if the wavenumber varies with time as k = k0/τ , where k0 = k(0) is
the initial value of the wavenumber. Instead of r we introduce the new independent variable ξ = rτ1/2. The
equations for δψ and δζ lead to the following equations for the unknown quantities f and g:

gξξ −
( 3

4ξ2
+
k2

τ

)
g =

Re
τ
gt; (2.2)

fξξ −
( 3

4ξ2
+
k2

τ

)
f =

g

τ
. (2.3)

In the new variables, the boundary conditions on the jet surface (ξ = 1) are

ηt = kf, (2.4)

2k2f + g = 3kη/τ, (2.5)

2k2fξ − gξ + Re
(
fξt +

1
2
ft +

fξ
τ

)
=

3kη
2τ

+
Re
We

(kτ1/2 − k3τ−1/2)η − 3Re
8

(
2kτ−3η +

ηt
kτ

)
. (2.6)

3. Short-Wave Asymptotic Relations. To study the decay of short-wave perturbations over the initial
period of time, we derive short-wave asymptotic formulas assuming that the initial value of the wavenumber k0 is
large (k0 →∞). As for an ideal liquid [4], such asymptotic formulas cannot be uniformly valid for any t. In deriving
the asymptotic formulas, we assume that time t is finite. Since perturbations with small wavelength compared to
the jet radius are little different from capillary waves on a flat surface, we seek a solution in the form

η = exp(ω0(τ)k2
0 + ω1(τ)k0)(η0 + k−1

0 η1 + . . .); (3.1)

g = k3
0 exp(ω0(τ)k2

0 + λ1(ξ, τ)k0)(g0 + k−1
0 g1 + . . .). (3.2)

The unknown function f is represented as the sum f = f1 + f2, where f1 is a particular solution of (2.3) and f2 is
the general solution of the corresponding homogeneous equation; in addition,

fi = k0 exp(ω0(τ)k2
0 + λi(ξ, τ)k0)(fi0 + k−1

0 fi1 + . . .) (i = 1, 2). (3.3)

The factors k3
0 and k0 on the right sides of Eqs. (3.2) and (3.3) are introduced since the right and left sides of Eqs.

(2.3) and (2.4) should have the same order of magnitude for large k0. Substituting (3.2) into (2.2) and equating the
coefficients at the same powers of k0, we obtain

λ2
1ξ − τ−3 =

Reω0t

τ
,

(3.4)
2λ1ξg0ξ =

Reλ1tg0

τ
, 2λ1ξg1ξ + g0ξξ −

3g0

4ξ2
=

Re
τ

(λ1tg1 + g0t).

As follows from (3.4), the value of λ1ξ does not depend on ξ, i.e., λ1 is a linear function of ξ. Taking into
account (3.4), from the nonhomogeneous equation (2.3) we obtain the relations

Reω0tf10 = g0, Reω0tf11 + Reλ1tf10 = g1,
(3.5)

Reω0tf12 + 2λ1ξτf11ξ + τ
(
f10ξξ −

3f10

4ξ2

)
= g2.

The homogeneous equation corresponding to (2.3) yields

λ2
2ξ = τ−3, f20ξ = 0, f21ξ =

3f20

8ξ2λ2ξ
. (3.6)
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We consider the boundary conditions on the jet surface. Since the exponents on the right sides of (3.1)–(3.3)
should coincide on the jet surface (ξ = 1), we have λ1 = λ1ξ(ξ − 1) + ω1 and λ2 = λ2ξ(ξ − 1) + ω1. Boundary
conditions (2.4) and (2.5) require that the following identities be satisfied at ξ = 1:

ω0tη0 =
1
τ

(f10 + f20), ω0tη1 + ω1tη0 =
1
τ

(f11 + f21),

ω0tη2 + ω1tη1 + η0t =
1
τ

(f12 + f22), (3.7)

2
τ2

(f10 + f20) + g0 = 0,
2
τ2

(f11 + f21) + g1 = 0,
2
τ2

(f12 + f22) + g2 =
3
τ2
η0.

We consider boundary condition (2.6). For large k0, the leading terms on the right side of (2.6) are pro-
portional to k4

0/Re; on the left side of (2.6), the leading term is proportional to k3
0 Re/We. The ratio of these

coefficients is Re2/(We k0) = (ρσ/µ2)(h0/k0). It is worth noting that for physically meaningful perturbations, this
parameter is not small despite the presence of the large quantity k0 in the denominator. Indeed, the value of h0/k0

is 2π times larger than the perturbation wavelength. Consideration of perturbations for which this parameter is
smaller than 10−5 m is physically meaningless. At the same time, the parameter ρσ/µ2 is of order 107 m−1 for usual
low-viscosity liquids similar to water in their physical properties. Therefore, the parameter Re2/(We k0) is large
rather than small. This consideration can be used to derive approximate formulas. Let us introduce the parameter
ε = We k0/Re2, which is assumed to have a finite value as Re → ∞. Then, equating higher-order terms on the
left and right sides of (2.6) and rearranging the obtained relations by using (3.5)–(3.7), we obtain the following
algebraic equation for λ1ξ:

ε[(1 + τ3λ2
1ξ)

2 − 4τ3/2λ1ξ] = −τ. (3.8)

Combining (3.8) with the ordinary differential equation (3.4), we obtain the dependence ω0(t) for ω0. An
approximate solution can readily be obtained assuming that ε is a small parameter. Let us introduce the new un-
known variable y so that τ3/2λ1ξ = ε−1/4y and express y as the infinite series y = y0 + ε1/2y1 + ε3/4y2 + εy3 + . . . .
The term of order ε1/4 is omitted since (3.8) expressed in terms of y does not contain a term proportional to y3.
As a result, we obtain

y = y0 −
1

2y0
ε1/2 +

1
y2

0

ε3/4 − 1
8y3

0

ε+ . . . ,

where y0 is defined by the equation y4
0 + τ = 0. Then, using (3.4), we have

ω0t =
1

Re τ2

(
y2

0ε
−1/2 − 2 +

2
y2

0

ε1/4 − 1
y3

0

ε3/4 + . . .
)
.

Integration of this ordinary differential equation yields the following expression for ω0:

ω0 = ± 2iτ−1/2

We1/2k
1/2
0

+
2τ−1

Re
+ . . . .

Let us determine the quantity ω1. The equation for ω1 is derived by equating the coefficients at k3
0 on the

left and right sides of (2.6) and rearranging the expression obtained:

ω1t

(
1 + τ3λ2

1ξ −
1

τ3/2λ1ξ

)
= −1

4
τ7/2Reω2

0t.

For small ε, the approximate solution of this equation has the form

ω1 = ± iτ

4 We1/2k
1/2
0

+
2τ1/2

Re
+ . . . .

Since the differential equation for η0(t) is rather cumbersome, we give the following approximate expression for
small ε:

η0t = η0

(
∓ 19

32
i

τ3/2

We1/2k
1/2
0

− τ

4 Re
+

1
2τ

+ . . .
)
.

Thus, the evolution of perturbations of the stretching jet radius for large initial wavenumber k0 is described
by the following asymptotic formula:
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Fig. 1. Perturbation of jet radius η versus time τ at k0 = 12, We = 1, and Re = 30 (1), 40 (2), and 60 (3).

Fig. 2 Fig. 3

Fig. 2. Perturbation of the jet radius η versus time τ at k0 = 12, Re = 40, and We = 1 (1) and 2 (2).

Fig. 3. Perturbation of the jet radius η versus time τ at Re = 50, We = 1, and k0 = 8 (1) and 12 (2).

η = τ1/2 exp
( 1

Re

(2k2
0

τ
+ 2k0τ

1/2 − τ2

8

))
(A cosα(t) +B sinα(t)). (3.9)

Here A and B are the constants of integration and the quantity α(t) is given by

α(t) =
1

We1/2

(2k3/2
0

τ1/2
+
k

1/2
0 τ

4
+

19τ5/2

80k1/2
0

)
.

It should be noted that for Re→∞, the expressions obtained agree with the asymptotic formulas presented
in [4]. Time dependences of the jet radius perturbation are shown in Figs. 1–3. The dependence shown in Fig. 1
is calculated for the initial conditions η(0) = 1 and ηt(0) = 0 and different values of Re. Viscosity causes the
oscillation amplitude to decay. The lower Re, the higher the rate of decay. However, this decay is slower than the
decay of perturbations with the same wavelength in the case of a jet with constant radius. If the value of Re is
not too small, the at the time when the beginning of perturbation growth is expected, the amplitude calculated
from (3.9) is also not small. For example, at τ = 6, k0 = 12, We = 1, and Re = 40, the perturbation amplitude
calculated from (3.9) for the above-mentioned initial conditions is η = 0.0128. As follows from Fig. 2, the oscillation
frequency decreases with increasing We. As the initial wavenumber decreases, the decay rate of the perturbations
also decreases (Fig. 3). The asymptotic formulas derived in the present paper are not appropriate for large τ . In
this case, a solution can be derived using approximate one-dimensional equations for the dynamics of a capillary
jet.
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